Our curriculum statements are designed to be used as a supportive tool to plan teaching and learning across our school. The key skills are derived from the National Curriculum and spilt into individual year groups to support a progressive approach and mixed age classes.

Mathematics at The Link Academy Trust

Our core purpose is to equip all pupils with the skills and confidence to develop their mathematical fluency, problem solving and reasoning in preparation for assessment (including statutory testing), further education and life beyond.

Children are encouraged to develop curiosity about number and embrace the mathematics that surrounds them each day in a variety of contexts that have meaningful connections to real life, including links with other curriculum subjects. We offer opportunities for children to develop understanding and mathematical articulacy through a cohesive progression of learning across the school in order to maximise their depth of learning. Children should be able to demonstrate a deep conceptual understanding of an area of maths and build on this over time, as well as establishing a secure knowledge of key number facts to allow them to become efficient mathematicians.

Mathematics at The Link Academy Trust is an opportunity for pupils to take risks, challenge themselves and work both independently and collaboratively towards solving problems. Children will develop concise and accurate vocabulary in mathematics through consistent modelling by teachers and high expectations for the pupils.

Our 'learning powers' (resilience, resourcefulness, reciprocity and reflectiveness) are evident throughout mathematics in The Link Academy Trust. Alongside this, we promote growth mindset and ensure all children feel empowered to achieve. This supports our children to develop self-confidence when faced with mathematical challenges, allowing them to embrace mistakes as part of the learning process and in turn value the importance of effort.

We strive to accelerate progress and improve outcomes for all of our pupils each year.

Vocabulary

Children's command of vocabulary is fundamental to learning and progress across the curriculum. Vocabulary is developed actively, building systematically on pupil's current knowledge and deepening their understanding of etymology and morphology (word origins and structures) to increase their store of words. Simultaneously, pupils make links between known and new vocabulary, and discuss and apply shades of meaning. In this way, children expand the vocabulary choices that are available to them. It is essential to introduce technical vocabulary which define each curriculum subject.

Vocabulary development is underpinned by an oracy culture and a tiered approach. High value is placed on the conscious, purposeful selection of well-chosen vocabulary and appropriate sentence structure to enrich access to learning and feed into written work across the curriculum.

Maths specific vocabulary

Rich maths vocabulary is modelled and discussed by class teachers and pupils. The expectations are high for children to consistently use accurate, concise and age-appropriate mathematical vocabulary during discussions and written reasoning. By the time Year 6 pupils undertake SATs, children should have a clear understanding of KS1 and KS2 maths vocabulary to eliminate potential barriers to understanding questions. Teachers use regular questioning and activities around maths vocabulary to address misconceptions and dual meanings. The focus on 'maths talk' is evident with talk partners, talk trios or whole-class discussions in response to frequent effective questioning throughout all maths lessons. By giving the children these opportunities to expand on their thinking and share their reasoning, they will develop their conceptual understanding and make connections between number facts.

Planning

Maths mastery is a core driver of our teaching and learning. This resource is complemented by fluency, problem-solving and reasoning tasks adapted from a variety of other sources. Lessons planned in all year groups adopt a Concrete-Pictorial-Abstract (CPA) approach to engage and add depth of understanding for all learners. The planning ensures that all learners are challenged at an appropriate level and support is allocated accordingly.
Depending on class structure, as mixed-age classes dictate, some year groups may receive separate lesson inputs by the Teacher and/or HLTA and some will share lesson inputs, but all will have differentiation incorporated into each lesson. Medium-term Maths Shed planning maps out curriculum coverage.

Lesson structure and class management

The focus on 'maths talk' is evident with talk partners, talk trios or whole-class discussions in response to frequent questioning throughout all maths lessons. Teachers will challenge understanding through regular, investigative questioning throughout, for example: How do you know? Can you prove it? Are you sure? What's the value? What's the same/different about? Can you explain that? What does your partner think? Can you show me another way? Maths pairs and trios are selected each week so children work with a range of other learners.
The main body of the lesson will include concrete, pictorial and abstract forms of mathematical learning and opportunities to develop fluency, problem-solving and reasoning Retrieval practice is built into a pupil's daily diet at least 3 days a week. This is to draw on and practice previously learnt skills, knowledge or understanding. There are a number of approaches to this and these are down to teacher discretion..

Working walls and resources

Each class has a mathematics space to display sentence stems, key models and diagrams to support learning in mathematics. It is a public display of the learning process which evolves as each day progresses to support children's independent work.
Individual rooms are resources with a range of resources to support learning (bead strings, tens frames, dienes, counters, cubes etc). Children know where maths resources are kept and are encouraged to independently use them to assist their own learning. A range of maths scaffolding resources are used by individuals identified as requiring them.

AFL, Self-editing \& feedback

We use CAPED as our core self-editing and feedback model. This takes place before, during and after a maths lesson. Children will typically respond to CAPED feedback using a purple polish pen or verbally as part of a discussion.
C - Check (pupils encouraged to correct mistakes)
A - Another Way (pupils to show their learning or calculate problem in a different way)
P - Prove It (pupils encouraged to prove there answer is correct)
E - Explain (pupils to use reasoning and mathematical language to explain their maths)
D - Draw (pupils to a method of 'drawing' their maths. Bar modelling, number line etc.)

KS2 pupils may mark their work together to provide opportunities to discuss understanding and instant feedback to assist in gauging understanding.

Times tables and number facts

Regular, short times-tables and other numbers fact activities take place in each class either during or before a maths lesson.
Children are assessed against a number fact passport from EYFS to Y6. These individual assessments are used to help set targets for pupils; copies are sent home for guidance, and time in class is allocated for practice and assessments. These number fact passports will be updated at least termly.
In year 4, pupils work toward their MTC through access to practice tests and target setting.

SEND, pre-teaching and mop-up maths Some individuals are specifically supported by additional adults, resources or differentiated activities in maths. Learners who have not kept up with the rest of the class during the lesson will have additional input planned for either before the next lesson or during, appropriate. If a teacher anticipates that an individual might struggle to engage with the day's learning, there may be a short pre-teaching session prior to the maths lesson. Intervention for pupils working significantly below age-related expectation is detailed in Class Provision Maps.

Calculation policy

The calculation policy (see separate document) is a guide for teaching the progression of calculation strategies throughout primary education. Sparkwell does not consider any strategy to be specific for use only in particular year groups. An example of this is pupils using basic number lines in Year 6 to solve negative number problems or the basic use of visual and concrete representations of numbers across all year groups.

In order to assess impact - a guide

Children will develop 'maths capital' - confidence, understanding and enjoyment in mathematics along with a comprehensive set of problem-solving skills and strategies to take with them to the next stage of their education. They will be engaged, resilient, challenged and able to quickly recall facts and techniques in order to maximise their depth of learning.

They will use mathematics effectively as a tool in a wide variety of situations and will be able to present a justification or argument relating to a problem using mathematical language. They will understand the relevance of what they are learning in relation to real world concepts and develop a sense of curiosity about the subject.

Our children will develop confident recall of multiplication tables to 12×12 by the end of year 4 and our attainment data will exceed national.

Assessment evidence - a guide

KS1

Statutory tests for Year 2 (SATs)
Maths Coverage Tracker and assessment document updated half termly

Teacher assessment - observations of maths behaviour and discussion

Maths books

Test base progress tests

Number fact passports

Years 3-5

Statutory Multiplication Tables Check for Year 4
Maths Coverage Tracker and assessment document updated half termly

Teacher assessment - observations of maths behaviour and discussion

Maths books

Number fact passports

PUMA tests x3 a year

Year 6

Statutory tests for Year 6 (SATs) - Mock tests x3 a year
Maths Coverage Tracker and assessment document updated half termly

Teacher assessment - observations of maths behaviour and discussion

Maths books

Number fact passports

Progressive curriculum plan

Number and place value/ Counting

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8, 50 and 100;	count in multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
Comparing numbers					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and $=$ signs	compare and order numbers up to 1000	order and compare numbers beyond 1000	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)		
Identifying, representing and estímating numbers					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

Reading and writing numbers (including Roman numerals)

read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks (copied from Measurement)	read Roman numerals to 100 (। to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers) read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
Understanding place value					

Addition and subtraction					
Number bonds					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Addition and subtraction Mental calculation					

add and subtract one-digit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations
Written methods					
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
Inverse operations, estimating and checking answers					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
Problem solving					
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=*-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division

Multiplication and division

Multiplication and division facts

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
Mental calculation					
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
	show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot		recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10,100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$) (copied from Fractions)
Written calculation					
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

				divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
					use written division methods in cases where the answer has up to two decimal places (copied from Fractions)
Properties of numbers: multiples, factors, primes, square and cube numbers					
			recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
				know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
				establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)

Order of operations

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

use their knowledge of the order of operations to carry out calculations involving the four operations

Inverse operations, estimating and checking answers

		estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Problem solving					
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

Fractions, decimals and percentages
Counting in fractional steps

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and 2/4 equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		

Recognising fractions

recognise, find and name a half as one of two equal parts of an

 object, shape or quantityrecognise, find, name and write
fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a
length, shape, set of objects or
quantity fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a ength, shape, set of objects or quantity

recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators			
Comparing fractions					
		compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
Comparing decimals					
			compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
Rounding including decimals					
			round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
Equivalence					
	write simple fractions e.g. ${ }^{1} / 2$ of $6=3$ and recognise the equivalence of ${ }^{2} / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
			recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. 0.71 $=71 / 100)$ recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$)
			recognise and write decimal equivalents to $1 / 4 ; 1 / 2 ;{ }^{3} / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Addition and subtraction of fractions

		add and subtract fractions with the same denominator within one whole (e.g. ${ }^{5} / 7+1 / 7=6 / 7$)	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and multiples of the same number recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number (e.g. ${ }^{2} / 5$ $+4 / 5=6 / 5=1 / 5$)	add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

Multiplication and division of fractions

| | | | multiply proper fractions and
 mixed numbers by whole
 numbers, supported by
 materials and diagrams |
| :--- | :--- | :--- | :--- | :--- | :--- |

Multiplication and division of decimals

| | | | | multiply one-digit numbers with
 up to two decimal places by
 whole numbers |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | multiply and divide numbers by
 10,100 and 1000 where the
 answers are up to three decimal
 places | |
| | | find the effect of dividing a
 one- or two-digit number by 10
 and 100, identifying the value
 of the digits in the answer as
 ones, tenths and hundredths | | |
| | | | | identify the value of each digit to
 three decimal places and multiply
 and divide numbers by 10,100
 and 1000 where the answers are
 up to three decimal places |
| | | | associate a fraction with division
 and calculate decimal fraction
 equivalents (e.g. 0.375$)$ for a
 simple fraction (e.g. $3 / 8)$ | |

Problem solving					
		solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	
			solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those with a denominator of a multiple of 10 or 25 .	

Algebra

Equations

solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ * - 9 (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables
Formulae					
			Perimeter can be expressed		use simple formulae
			algebraically as $2(a+b)$ where a and b are the dimensions in the same unit. (Copied from NSG measurement)		recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)
		Sec	nces		
sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	compare and sequence intervals of time (copied from Measurement) order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)				generate and describe linear number sequences

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] * capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] * time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using 1 cm^{3} blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3}.
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Measuring and calculating					
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (I/ml)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa

recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			
			find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed ${ }^{3}$) (copied from Multiplication and Division)	calculate the area of parallelograms and triangles
					calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [e.g. mm^{3} and km^{3}].
					recognise when it is possible to use formulae for area and volume of shapes
Telling the time					
tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks	read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
			solve problems involving converting from hours to minutes; minutes to seconds;	solve problems involving converting between units of time	

Geometry: Properties of shape					
Identifying shapes and their properties					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)
* 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
	identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				

Drawing and constructing

		draw 2-D shapes and make 3-D shapes using modelling	complete a simple symmetric figure with respect to a specific	draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$	draw 2-D shapes using given dimensions and angles
		materials; recognise 3-D shapes in different orientations and describe them	line of symmetry		recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)
Comparing and classifying					
	compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
				distinguish between regular and irregular polygons based on reasoning about equal sides and angles	
Angles					
		recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
		identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		identify horizontal and vertical lines and pairs of perpendicular and parallel lines			

Geometry: Position and direction					
Position, direction and movement					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and	describe positions on the full coordinate grid (all four quadrants)

as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe movements between positions as translations of a given unit to the left/right and up/down	know that the shape has not changed	draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
		plot specified points and draw sides to complete a given polygon		
Pattern				
order and arrange combinations of mathematical objects in patterns and sequences				

Statistics					
Interpreting, constructing and presenting data					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				
Solving problems					
		solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

